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Abstract—This paper presents models and measurements Il. ELECTRICALLY SHORT ANTENNA

of linear antenna input impedance in resonant cavities at high . . ' .
frequencies. Results are presented for both the case where the We use the potential representations for the field in the

cavity is undermoded (modes with separate and discrete spectra) Coulomb gauge similar to those in Smythe [4]; however, the
as well as the overmoded case (modes with overlapping spectra) finite wall conductivity is introduced differently, consistent
A modal series is constructed and analyzed to determine the \yith the approach in Collin [5] (derivations can be found in [1]

impedance statistical distribution. Both electrically small as well . - .
as electrically longer resonant and wall mounted antennas are and a summary in the Appendix). The electrically short center

analyzed. Measurements in a large mode stirred chamber cavity driven dipole, aligned with the axis, has current distribution
are compared with calculations. Finally a method based on power I(z) ~ I(0)(1 — |z|/h). Using this in the equations (69), (74),
arguments is given, yielding simple formulas for the impedance (75), (77), and (78) of the Appendix, with time dependence
distribution. et gives the input impedance

Index Terms—Antenna measurements, antenna theory, cavities, , _ p v p

cavity resonators, chaos, impedance, resonance, statistics. ( ) ) 5, o
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N THIS PAPER, statistical models for the input impedr:mcvé'h.ere Rraq is the a_ntenna radiation r_e5|st_ance in free space
. . . . which, for a short dipole of lengthh with triangular current

Zn Of alinear antenna in an electrically large cavity aredey ., . .

. distribution, is [6]

veloped [1]. Cases where modes have overlapping spectra, an

the antenna impedance approaches the free space value [2], as Riag ~ g_o (kh)?. (2)

well as separate discrete spectra [3], [4] are both considered. . g .

The behavior of the impedance and its extreme values are usgijﬂl?kgu_"’mt'ty”,o zh 120w OthbIS the |rrr]1pedance of flreg spafce

in determining the transmission and reception characteristicsl_ X 'I_'hw/c IS tt'te wavenumberc(is the vacuum velocity o

an antenna and practical bounds for these quantities. An eldd” )- The quantity

trically short center driven dipole is treated first by means of a 7 =R—iX (3)

modal series for the cavity field. The statistical properties of the _ o _

high-frequency cavity field are introduced [7], [10], [11] fromis the local impedance of the antenna, consisting of the ohmic

which distributions for the impedance are extracted by means'gpistance and local reactanc¥ [this includes the quasistatic

Monte Carlo simulation and asymptotic analysis. These simuf@rt due to the cavity but can be approximated as the free space

tions and asymptotic results are compared to measurements &€ consistent with (75), and with (77)]

mode stirred chamber. It is then shown how these results apply X ~ —1/ (wC) + wL. @)

to an electrically longer resonant dipole and a wall-mounted _ ) ] ) )

monopole antenna. The known enhancement of the field ndd}e capacitance is dominant for a short dipole, with [6]

the cavity wall [24] is found to correspond to the behavior of 2megh

|I. INTRODUCTION

the field correlation function, which is needed in the treatment O~ . )
of the monopole antenna. Finally, a simplified approach usifghere the expansion parameter is

conservation of power is carried out that yields practically useful

formulas for the impedance distributions and extreme values. Q. =0-2(1+1n2) (6)

and the antenna fatness paramete? is 21n(2h/a). The in-
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the total inductance is, nevertheless, reasonably accurate). The
cavity volume isV/, its quality factor i), the eigenfrequencies

of the perfectly conducting cavity ate,, ¢q is the electric per-
mittivity of free space, and the Coulomb gauge eigenfunctions
have normalization

1
V v An 'An1 dV - 6mn~ (8)

Il. STATISTICS OF CAVITY FIELD

This paper is concerned with electrically large, complex cav-
ities, for which a statistical description of the modes in (1) be-
comes applicable [7], [8], [9], [10], [11]. The cavity eigenvalues
(resonant frequencies), have spacings that can be described
by a slowly varying meafAw, ) times a random variable

Awp = Wpy1 — wp = (Awy) s 9)

where the asymptotic formula for the mean is [12]' [13] Fig. 1. Fifty-ohm Smith chart for input impedance of monopole at 220 MHz

9 3 9 (o =~ 0.0609) with 10-MHz sweep and 4800 uniformly spaced frequency
<Awn> ~TC / (an) ’ Wn — 0. (10) points. “Bounding” power balance result comparison. Time dependence on the
. . . . . experimental Smith charts is«*.
The probability density function for the normalized spacing

Poisson (exponential) when the cavity geometry is simple (€.gin b6 density do arise and can be included as contributions cor-
separable where eigenvalue degeneracy occurs frequently) [Jrééponding to periodic ray trajectories [11], [14], [15].

[12] The correlation function for the eigenfunction components is
FP(s) = e, 0<s< oo (11) Ej2i1]°fe[r1e6r}t from that for scalar wavefunctions [11] and is given by
and is Rayleigh (Wigner) when the cavity is complex [10], [12] ( ) (Any (21) Ang (22))
5 Pz 21, 22) =
V()= Zse 4 0<s < oo (12) VI(AZ, (21)) (A2, (22))
2 3 1 9%\ sinfk
Complex geometry is typical of electromagnetic compatibility ~ = (1 + 5 ; 2) w a7
applications and thus the Rayleigh spacing is more frequently 2 ki 021 ki (21 = 22)
encountered. Constant spacing wherek,, = w,, /c and the asymptotic symbol indicates the high
order modes.
s=1 (13)
is also useful to study because, as will be shown later, it gives IV. EXPERIMENTS AND SIMULATIONS

similar results for the impedance as does the Rayleigh spacingrhe parameter that describes the degree of spectral overlap is
and is simple enough that asymptotic analysis of the modal se-

ries (1) can be carried out. a=kV/(27Q). (18)
The cavity eigenfunctions are taken to be isotropic (all thregig harameter is the ratio of the energy stored in the cavity
components have similar statistics) with Gaussian density [?rlnodes over a narrow spectral bandwidth (containing many com-

[11] plete modes) to the same energy if the field amplitude is fixed
(=V3A4,, (14) atthe average peak level; it can be thought of as the ratio of
1 modal width to modal spacing. If the cavity is undermoded (sep-
fe(€) = — e=¢/2 (15) arate discrete modal spectra) < 1. If the cavity is over-
Var moded (many overlapping modes) > 1. Figs. 1-3 show
which follows the chosen normalization [7] Smith charts for the measured input impedance of near resonant

oo oo monopoles in the wall of a mode stirred chamber for the un-
3 / A2 fa., (A,) dA,, = / C*fe(¢)d¢ =1. (16) dermoded through overmoded range. The large variation of the
700 70 input impedance exhibited over a relatively narrow frequency
The normalization is assumed to be the same throughout thend is motivation for a statistical treatment. Thus the data for
cavity. An argument in support of the Gaussian nature of tliee input resistance shown in these figures will be reorganized
eigenfunctions relates to a ray description of these eigenfumtto an ordered distribution in all future figures.
tions, where the ray contributions to the modal field at an obser-The mode stirred chamber (37§t23 ft x 13 ft) has a volume
vation point consist of many separate returns from the complekV ~ 313 m3. The cavity is not simply a rectangular box,
cavity boundary that are uncorrelated [11], [7]. Experiments @ince a mode stirrer was present in the chamber, but was not
cavities with smooth walls have shown that deviations from thisoved during the frequency sweeps that generated the data.
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Fig. 4. Example of energy spectra when the cavity is overmodgs 1.
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Fig. 2. Fifty-ohm Smith chart of input impedance of monopole at 920 MHz
(o = 2.16) with 1 MHz sweep and 801 uniformly spaced frequency points.
“Bounding” power balance result comparison.
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Fig. 5. Example of energy spectra when the cavity is undermeaded 1.
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3Vkno/ (4SRs) = 233000, whereS ~ 303 m? is the wall sur-
face areaan®, = 1/ (¢6) is the surface resistance of the walls
(where the skin depth 8= \/2/ (wpo), pn = pg = 47 x 1077

H/m ando = 2.6 x 107 S/m are the magnetic permeability and
electrical conductivity of the walls, respectively). A small part
of this reduction results from the roughness of the walls and
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‘s‘_g§=—_’%% the presence of the stirrer. However, because the variation about
S the mean is also larger than would be expected in a rectangular

cavity with finitely conducting walls, it is thought that other loss
mechanisms are present in the chamber.

The antennas were near-resonant wall-mounted monopoles.
The dimensions of the monopoles w&xe ~ 2.591 mm, h
32.90 cm at 220 MHz,h =~ 7.544 cm at 920 MHz, anda

Fig. 3. Fifty-ohm Smith chart of input impedance of monopole at 15 GHz 51 mm with 4 ~ 4.325 mm at 15 GHz.
(o & 1206.7) with 10 MHz sweep and 801 uniformly spaced frequency points. Figs 4 and 5 illustrate the behavior of the spectra for the two

“Bounding” power balance result comparison. o . ]
limits of «. Figs. 6 and 7 show comparisons of the monopole

The mode stirrer breaks degeneracy and makes Rayleigh input resistance with Monte Carlo simulation of the series
tistics more applicable and slightly lowers the quality factor at _ — i — i = (Zin — 7) | Rena

the lower frequencies (rotation of the stirrer would span fewer ™"~ ™ " " e

resonant modes than the frequency sweeps at 220 MHz because _ <27TQ> Z iw/ (2Q) 342 (r)  (19)

of its limited size). The quality factor of the chamber was de- ARV w(l+i/(2Q)) —w, ™

termined to have a mean valde ~ 80 000 by examining the

3 dB width of isolated modes at 220 MHz (the transmit angthere we have approximated the summafdad (Aw,,) are
receive monopoles for this measureméntx 6.668 cm and approximated as constant also) since we are including only
h =~ 3.493 cm, respectively, wittf2a =~ 2.591 mm, were taken those modes near the observation range afalues captured

as short as possible to minimize absorption, while maintainimg the figures (the range of included modes contains a
sufficient signal-to-noise ratio); at 920 MHz it was estimatechnge ofw,, that is slightly larger than the observatierrange
from the 220 MHz value, by the scalingw, to be approxi- so that negligible error is incurred in this approximation).
mately@ ~ 165 000; at 15 GHz it was taken as the experimentalhe simulations were done with all three types of eigenvalue
value (determined by measuring the mean field along with tepacings. The agreement with the experimental results is good;
net power into the chamber) 1280 000. The mean quality fac@lthough there is some small variation with realization of the
at 220 MHz is significantly below the theoretical valge ~ random numbers, the Rayleigh and uniform spacing results

~
~
~
~

n’!‘
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Fig. 6. Normalized input resistance distribution from simulations and experiment at 220 Mktz((0609).
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Fig. 7. Normalized input resistance distribution from simulations and experiment at 920dk$zX.16).

are in slightly better agreement with measurements than th@ MHz with 4800 frequency points in the 220 MHz experiment;

Poisson spacing. the simulations used 200 modes with 1000 frequency points.
The near resonant monopoles in the experiment had nearhye frequency span was 1 MHz with 801 frequency points in the

zero free space reactance (except the 920 MHz antenna w0 MHz experiment; the simulations used 400 modes with 1000

had the experimentally determined valie5 ohms,e’*t time  frequency points. The frequency span was 10 MHz also with 801

dependence is used in the Smith chart figures). The experiméegquency pointsinthe 15 GHz experiment.

tally determined free space value of the radiation resistances

were _44 ohms at 220 MH_z gnd 4§ ohms at 9ZQ MHz. These V. ASYMPTOTIC BEHAVIORS

experimental values of radiation resistance are slightly above the

values expected for such antennas but were nevertheless usedltsing the modal series (1) it can be shown that the frequency
normalize the cavity impedance data. The frequency span veagrage [taken over a narrow band, butincluding many complete
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modal spectra with mean spacifgyw) = 72¢3/ (sz)] ofthe 220 MHz there are only 141 modes in the frequency sweep even

normalized input impedance is nearly unity [1] though there are many more frequencies sampled. Iy fer 1,
1 wy the frequency sweep is sufficiently fine to resolve the spectral
(Zin), = ——— / Zindw — 1 peaks (over-sampling in frequency) then the density function of
Wi =W Ju the peaks is of interest. Thus, near the upper limit;gfve can
(Aw) K wi —w- < w. (20)  setw = w, and find the single mode density function for the
It can also be shown in the overmoded limit that by replacifgf@K values (the square of a Gaussian random variable)
the modal sum by an integral (insertidg,, / (Aw,,) in the sum- O a2
mand) the normalized impedance approaches unity [1] f(rin) = T o rma> 1o (26)

Zin — 1, a — 0. (21) The exponential behavior in (26) is the same as (24). The distri-

] . bution function for the peak values corresponding to (26) is
In the next two subsections the uniformly spaced modal series

is used to estimate the behaviors of the extreme values of the F (rin) = erf ( rina/Z) (27)

impedance. The final subsection estimates the variance in the ) ] )
overmoded limit. whereerf(z) is the error function, and the number of indepen-

dent samples corresponds to the number of modes contained in
A. Uniform Spacing, Single Mode the frequency sweep.

The undermoded limik < 1 has s_eparated, discrete, spe(_:tr@__ Uniform Spacing, Between Modes
The largest values of the input resistance and reactance in this i )
region occur whem is near a resonance. Thus we can consider | € Smallest values of the input resistancedo&’ 1 occur
a single mode of the series (the mode closest to the obsef/A€Nw is between modes. Taking the observation frequency

tion frequency) and estimate the extreme statistics by regardifid® Pe exactly between modes of the series (19) with uniform
w — w, 1o be a random variable with uniform density betweeﬁpeCtral spacing, the modal terms can be taken in pairs about

+ (Aw,) /2 (for typically used uniform frequency sampling).the observation frequency, each pair having a simple exponen-

The distribution function, derived from the ratio of independedi2! distribution. The infinite summation requires an infinite se-

random variables [17] (ratio of Gaussian squared to shifted uffi#€nce of convolutions to be performed to obtain the density
form squared random variables), for this case is [1] funct.|on [17]. U_S|r_1g. the Laplace transf_orm to .conv.ert the con-
volutions to an infinite product, and using the identity [20]

> « —TinQ o0
F(Tin) =1- f (7‘) dr ~ 1 -+ ; \/rina/ (27() e Tin /4 |:1 $2 :| B a sin (’/T /0,2 + 3?2)
-[Ko (rina/4) — Ky (rina/4)] , TS a, a1l (22) he1 k? —a? Va2 + x? sin (ma)
where the identity [18] [;* e—um(dx/\/m) _to evaluate the product, the density can be found by inverse
o =

eua/ZKO(Va/Z) has been used anfo(z), K,(x) are the transform of the resulting function for frequency samples be-

modified Bessel functions. Figs. 8 and 9 show this result (Iorli ee_g modes. The integral of the density function is thus the
dashed curves) compared to measurements and Monte C ribution [1]

simulations of (19) with uniform spectral spacingié too large F(rw)=F T2rin (28)
in Fig. 9 for this result to be valid over any substantial range of Min) = x| Tgq
r:n). Over most of the valid range (22) can be simplified to

where from the residue method

2 20 2/ 2 4 >
Pl ~1= oy Moz rm>a @) 5 () =1- 4 cosh(a) - 32 (-)"
m=0
However, near the upper limit of,,, the corresponding density o2m + 1

function exhibits exponential behavior that allows one to estab- : e (BmHX - (29)

2 2/.2
lish practical upper bounds for the resistance values (2m +1)" + do?/x
An alternative representation for the density functign(x),
f(rin) = a, P 1. (24) Where [ (r) = f (m%rin/ (80)) 7r2/ (8a), that converges

TTin rapidly for y — 0, can also be obtained from the inverse trans-
The normalized reactance also exhibits exponential behavigfm using the identity [21]
near the upper limit (an averaging method [19] can be used to a ) 1 ctioco
. . . . —a”/(4t) — _~ st —aﬁd
give a more uniformly valid expression) [1] e ee S
2 V 7Tt3 c

e—r;na/Z

271 —ico
f (i) & av?2 e~ lminler |Zin| @ > 1 (25) (althqugh it is difficult to integrate to obtain the distribution
T |Tin| function) [1]
which shows that the extreme reactance magnitude is approxi- ta? /? e
mately half the extreme resistance. Fx (x) = 74/ cosh(a) Ve > (=)™ (m+1/2)

The number of independent samples in a frequency sweep L,
is dependent on the number of modes spanned. For example at e (mHL/2)77 /(40 - (30)
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Fig. 8. Comparison of asymptotic formulas, simulation, and experiment at 220 MHz with 10-MHz sweep.
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Fig. 9. Comparison of asymptotic formulas, simulation, and experiment at 920 MHz with 1-MHz sweep.

Figs. 8 and 9 show the distribution function (28) (short dashéidl can be dropped, and (31) can be integrated to give the distri-
curves) compared to measurements and Monte Carlo simWation functionF (r;,) = 2erfc[y/«/(2r;,)], whereerfc(z) is

tions (this result describes the entire distribution in Fig. 9 sindbe complementary error function. The number of independent
the placement of the observation frequengyis not critical samples, when we are over-sampling in frequency, is again the

when the modes are overlapping ané of order unity). number of modes spanned in the frequency sweep.
Using the second representation (30) we see that the densitifor o of order unity, the first representation (29) can be used
function exhibits exponential decay for very smal] to give
™
2 Tin) ~ — cosh(q)e " [(Ze)/m4m/Qa)lx/4 - oo
f (Tin) ~ COSh((l) (.,ﬁ, eia(Tin+1/Tin)/27 T'in << (67 f( ) 2& ( )
T o = O(l) (32)

(31)
which again allows one to establish practical lower bounds fehowing the exponential decay for largg. If we take the over-
the inputresistance. Far< 1, thear;, /2 termin the exponen- moded limita. > 1, from the second representation (31) we
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find that the normalized input resistance is Gaussian distributistbre accurate approximations could be constructed by the addi-
about the mean of unity tion of random components to the distribution. The impedance
5 , is then found by using this current, and the integro-differential
fpr) ~ ,/2— eor/?, T =1+ p., «a — oco. (33) representation for the electric field (36), in the stationary (first
T order corrections to the current do not contribute) EMF repre-
L sentation (78) [6]
C. Overmoded Limit "
By the central limit theorem [17] we expect both components Zin = —% / E.(2)I(z)d-=. (40)
of the impedance to become Gaussian distributed in the over- 12(0) Jon
moded limita: > 1 since many modes are equally contributing Noting that the integral of a Gaussian random process is a
to the modal series. Finding the variance of both componei@sussian random variable [17] we find
thus allows us to write

. nok? tot 2nQ
Zin~ R—1iX U, —
Zin ~ 1 4+ 19C — imol’, a>1 (34) At Xn: ( 2r " 3V

where( and(’ are independent, normalized, zero mean Gaus- . (’iwz/Q) w? [wy 342 (41)
sians, and the standard deviations are found to be [1] w2 (1+4/Q) —w?2 ™

ro = z0 = 1/\/a. (35) where again the antenna ohmic resistanc& iand the local
reactance is (we are ignoring quasistatic images in the cavity

walls)
VI. ELECTRICALLY LONGERANTENNA 1
. : N o~ =2, cot (kh) + 22—
The preceding analytical and simulation results were bas o 21 sin? (kh)
on the assumption of an electrically short dipole, but the ex- . [2Si(kh) + sin (2kh) {2Cin(kh) _ Cin (2kh) — 3
periments were conducted using near resonant monopole an- 4

tennas. This conflicting situation will be resolved in the present — cos (2kh) {Si (2kh) — 2Si (kh)} — 3kh] (42)
and next sections. Using the representations from the AppenQ%SKm% Cin(x) are the sine and cosine integrals. The local

(69), (74), (75), and (77), the integro-differential equation fqgacrance (42) is simply the contribution of the local quasistatic
a center driven linear antenna (with drive voltagg inside a {orm (second term) in (36) to the impedance in (40). The quan-

cavity can be written as tity Ut in (41) is the variance of the stochastic integral ap-
~Vob(z) = E. pearing in the impedance representation (40) and is given by
iw w2/w2 1 h h 3 1 (-')2
R——— < Ana(z Ut = — ink (h—|z / 1+ =5 =
eoV ; w2(1+1i/Q) —w? =) " sin? (kh) [h sin(h =z “n 2 " k% 0z*
h i sink, (z—2") .
) / N dy 4 RO 0 Zlsink (b — |2]) d2 dz. 43
[}LAnz<z>1<z>dz+ i b G Sk (b2 d ds (43)
1 92 h 1(2')d2' A small error is made (mostly in the reactance) if welset- k
< + 72 @) } m - 1(2) in Ut for all values ofx [this approximation is consistent with

the previously discussed truncation of the series (19) in the range

(36) ofthe resonant modes]. Note thatkjf is retained i/ t°t, it can
where the second term is the local quasistatic contribution. TA@ shown [1] in the overmoded limit > 1, then the correct
antenna current distributiof(2) is the unknown. The antennatotal antenna reactance [6]
is assumed to be thin and thus the local quasistatic term canybe _ _ "o , cot(kh) + Mo
thought of as approaching the transmission line form [22], [23]™ 2 © 4
- [2Si(2kh) + sin(2kh) {—2 + 2Cin(2kh) — Cin(4kh)}

— cos(2kh) {Si(4kh) — 2Si(2kh)}]/ sin®(kh)

P A e CIL
k2 822 _h a2 + (Z _ Z,)Z
v is produced rather than the valig that is obtained when the

~ Q. (1 n i? 3_2) 1(2). (37) approximatiork,, — k is invoked; at low frequencigsh < 1,
k? 0z X and X;, become the same; even fbh = 7 /2, where the
This term, in addition to the boundary conditions dominant leading term of the reactance vanishes, t_he error is
X =~ 64 ohms ersus the correéf;, ~ 43 ohms. It is rec-
I(£h)=0 (38) ognized that the right hand side of (43), with — &, is just

5 . 1 .
play a dominant role in determining the distribution of currerfrad2™/ (mok?), whereRy,q is the free space radiation resis-
(at least up to the first resonance). By means of (37) and (3§jnce of the electrically longer antenna [6]

the leading term of the current can thus be taken as the usual (47 /5y)sin? (kh) Rraa

sinusoid — 2Cin (2kh) + sin 2k [Si (4kh) — 2Si (2kA)]
() ~ Tosink (h — |2]). (39) — cos 2kh [Cin (4kh) — 2Cin (2kh)]. (44)
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The M135 electric field probe is a 1.3cm

- dipole with a detector dicde. The probe output
is connected to a high impedance voltmeter
through semi-conducting cables (100kQ/ft).
The probe was calibrated from 220MHz to
400MHz in a TEM cell.

/ Mode Stirred Chamber Wall

Carbon Line HP3478A
\ e Multmeter

L~ Waveguide below cutoff

———
. ] |
b M135 Probe 8.9cm o
i S 1.56m

Foam Block l

] MSC E field test setup
3m

Fig. 10. Drawing of 3 dB wall enhancement field measurement at 220 MHz using dipole probe.

Therefore, using this simplification in (41), we find to be the monopole free space radiation resistance), and the
N 9, 9 comparisons with experiment, made above, are justified.
Zin~ R—1iX + Rpaq Z <2§Q> Z(Zw /Q)w [@n 5 3A2 . It is interesting that the known 3 dB wall enhancement of
n RV ) w2 (1+i/Q) —wi the normal electric field [24], and its transition into the cavity

. o ) (45)  volume are represented by this half space correlation function
Surprisingly, this is the same form we had previously for the
3 ? i
> :R;LZ(Z, Z)N1—|— 5 <1+_> Sin u

short antenna, except that the radiation resistaiigg is Now (| Epoum|®

the correct free space value for the electrically longer antenna- 5 BN

Thus the quantity;, = (Zi, — Z) /R.aa from the electrically | > u u

short antenna theory given before is approximately the same for 47)

electrically longer antennas. Figs. 10-12 show a mode stirred chamber experiment and re-
sults verifying the presence of this wall enhancement in the un-

VIl. M ONOPOLEANTENNA AND WALL BEHAVIOR dermoded region. The normal electric field distribution on the

A previous paper [16] has shown that the correlation dyé’}ﬁa" is3dB r_ugher than mthe volume of the cavity (thisis borne

o . . . .out for the field as a function of frequency in Fig. 11, and ap-

for the field is proportional to the imaginary part of the dyadic . ) S h

groxmately for the field at the resonant mode frequencies in

(near the wall mounted monopole antenna) at 0, we can use lg. 12). The frequency range mc;luded n _these figures is frc_)m

. X . . .220-230 MHz (6381 points are included in the close spacing

the half space dyadic Green’s function to obtain the correlation _. . . . L

. " . : in'Fig. 11 and 5561 points are included in the far spacing in
function transition near the cavity wall. The result is

u=2kz

Fig. 11).
Anz (Zl) Anz (22)>
" _
o (71, 22) VA2, (1)) (A2, (22)) VIII. POWER BALANCE
U3 14 1 3_2 Now that the usefulness of the electrically short antenna

2 k2 022 theory has been demonstrated, we return to the electrically
sinky, (21 — 22)  sink, (21 + 22) short antenna and develop a simple engineering model.

[ ken (21 — 22) ki (21 + 22) | (46 We break up the fields. at the antenna into the sum of a re-

flected part'*f and a partz'» radiated as if in free space. The

_Using this correlation function, it is easy to_ show [1] that thﬁnpedance components of the short dipole are correspondingly
impedance of a wall-mounted monopole is half that of tl}?roken into the sums

dipole. Thus, again the quantity, = (Zi, — Z) /R;aq for the
monopole is the same as for the dipole (assuniipg is taken Riy = Rrad + Rywanl (48)
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Fig. 11. Electric field distribution from two dipole probes, one 6.9 cm from wall and one 3 m from wall, showing 3 dB wall enhancement.
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Fig. 12. Electric field distribution from resonance peaks for both probes showing 3 dB wall enhancement.

and z arm of the antenna) of the short dipole, and the mean energy
X =X + Xoall. (49) density in the cavity is
_ 3 2
The quantityR,.4 is the free space radiation resistance associ- U=3eo <|Ez| >V (51)

ated with the fieldz*2? and X is the local reactance associateqyhere the subscrigt denotes volume average. Now using the
with the quasistatic part of the field*2d. The quantities?,. definition of cavity quality factor

and X . are associated with the reflected field from the cavity

wall E*<t, The wall impedanc.,.;; = Ryan — i Xwan can be Q= wVU (52)
written in terms of the received voltage at the dipole due to the e
reflected fieldV,y ~ —hE™f. Thus with the average power into the antenna (the dissipated power)
given by
Zatl = Viet/1(0) = —hE"/1(0) ,
_Ercf 9 Pin = % Rin |I(0)| (53)
= U (10Fse02) 60 |
/<|Ez|2> we obtain
" 7o — Bt [ Q2 Rinno 54
where the received voltage has been determined from the effec- wall = 3kV (54)

2
tive height (the positive reference of the voltage is on the positive < |2 >V
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(54), and using lower case impedances to denote the quantities [7wan| < (62)
Twall = Rwall/Rrad and Twall = Xwall/Rrad (nOte that this

scaled reactance is really the samegssincez;, was defined The highly undermoded limit i1/ (2 + MZ/a) < 1y <
with the local reactance subtracted out), we finally obtain (2 + Mg/a) and2 |zwa.| < 2 + Mg/a. The highly over-

moded limit is1 — My/v/a < 1y < 1+ My//a and

Introducing R..q, given in (2), and«, given by (18), into 1 2
( + —M2> -1

Twall =Tin — 1 = T\/Tin/c (55)  |zwan| < Moy/\/a, thus givingri, — 1 andz..; — 0.
Twall =(\/Tin/@ (56) B. Density
where The distribution of input resistance generated by the power
o balance results, with the normalized Gaussian assumption for
F= M (57) the normalized reflected field in (55), is shown as the dotted
<|Ez|2> curves in Figs. 13 and 14. The extreme values are reasonable
’ but the midrange distribution is not even close to the experi-
T (Emf) mental or simulation results. Using the modal series field rep-
(=—==. (58) resentation for a short dipole in a cavity we can generate the
<|Ez |2> actual distributions for and¢ in (57) and (58), from which we
v

construct more accurate density function approximations. Using
short dipole representations from the Appendix (80) and (83) in

A. Extreme Values (82), along with (81) gives

The quantities and( in (55) and (56) describe the fluctua- cof Z %
tion of the real and imaginary parts of the reflected field at the —E; ; 1(0)
antenna location normalized by the mean cavity field. For the |E | \/Z PRy /éz) - |7(0)]
present we assume and( have normalized Gaussian densi- TR
ties with zero mean (this assumption is refined in the next sub- w? 1(0)
section). To obtain an extreme value curve for the impedance 1(0)]
variation we could take these random variables to be fixed at, \/Z |w2(1+7/Q) w2 (14i/Q)—w2]*
say, the three sigma poiti/, = 3 of the underlying real and 342,
imaginary Gaussian distributions. It is interesting to note that if > To—won) Aoy Tia
the cavity field is viewed as a three dimensional standing wave i =
in the frequency range of the fundamental cavity modes, then \/Z (oo wn)‘g/ Ao Fial?
the maximum-to-mean-ratio of the field is 8:1 , corresponding
to the valueM, = 2+/2; a value not very different from the (63)
three sigma valud/, = 3; these extreme results may there- ¥ 3A7,
fore be useful at lower frequencies than anticipatedSetting \/ o) [{Awa) Fial

7 = Mycosp and( = Mysing and solving the quadratic \yhere 1(0) is taken to be real and positive (this choice is to
equation gives be noted when interpreting the real and imaginary parts of the
5 reflected field) and we have included only the resonant-range

re=14+ 1 M2 cos? g + <1 + 1 M2 cos? <P> —1 terms in the final approximation. The first term, which corre-
20 20 sponds to the total normalized field at the antenna, has a positive
(59) real part. The second term, which corresponds to the normalized
) radiated field at the antenna, is negative real. Note that the local
Tyall = Mosin g/ 7in/a (60)  uasistatic normalized field has been subtracted from each term

where thet sign is chosen consistent with the sigreof . The in the difference. In the undermoded limit< 1, the first term
dashed circles in Figs. 1-3 are plots of these resultsMith= 3 1S imaginary except in the narrow frequency band about the res-
(andy ranging over values betweenr andr). These extreme ONances. The real part is thus skewed toward negative values.
circles provide a reasonable containment of the experimentdlUS We try taking the asymmetric Gaussian density
impedance variations. The radiation resistance of the 15 GHz pla) _. 2
f(r)~ me

monopole was taken as the nominal 36 ohms value. V2r 0<7<oo
The extreme values of the real and imaginary parts on this
; i 2—pla) ;2
circle can be easily found as ~ 2 O T2 —00<T<0 (64)
V2 '
1 12 1 2 2 as a fit to the density function of the real part of the normal-
Lt 5 My = L+~ -1 ized reflected field (63). If we apply the result from (20), that

(rin),, = (rin), — 1, we can determine the function afas

1 1 2
<Ti“<1+%M02+\/<1+%M02> -1 (61 p(oz):l—l/[2 20/ + €** erfc (\/ﬁ)} . (65)



988 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 5, MAY 2003

| ] | .
80 L
-
@60 - _
3 60
[
(3]
o
40 -
20 ==Cm=  MSC Data F=220MHz 10MHz span Rin/44 ohms
==@== Random Mode Series (Uniform Spacing
Power Balance (bandwidth modification)
-+ Power Balance
———Single Mode Approximation
0 T T T I
0.001 0.01 0.1 1 10 100
Rin/ Rrad

Fig. 13. Normalized input resistance distribution from simulation, power balance (the bandwidth modification curve uses the asymmetriceBaotsidierd
distribution) and experiment at 220 MHz.
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Fig. 14. Normalized input resistance distribution from simulation, power balance (the bandwidth modification curve uses the asymmetricalaotsidietd
distribution) and experiment at 920 MHz.

The functionp(a) approachega asa — 0 and approaches F(¢) =1+ ief (g /\/5) , —00 < ( < oo0. (67)

1 asa — oo. Figs. 15 and 16 show a comparison of the
distributions for the real and imaginary parts of the normaliz ) .
reflected field obtained from I\?Iontg I%:arlo simulations of o 15 used 500 modes; 100 modes at each e_,\nd of the interval

. . . re beyond the sampled frequency range. Fig. 16 used 1000
the modal series representation (63) (solid curves), and des; 200 modes at each end of the interval are beyond the
asymmetric (short dashed curve) and symmetric (dotted cury '

. A pled frequency range. The agreement is reasonably good.
Gaussian distributions The “kink” discrepancy in Fig. 15 is caused by the discontinuity
F(r)~1~ 3 p(a)erfc (T/\/i); 0<T<o0 of the density function (64) at = 0. The single mode approx-

imate distribution’ (r;,) (23) can be transformed by means of

~ 15 p(a)] erfe (—T/ﬂ): —00 <7 <0 (66) the quadratic relation, = (V72 +4a +7)" / (4a) to a dis-
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point M, = 3. However, when the distributions are over-sam-
- - pled in frequency, such that the resonances are fully resolved
(for example the 220 MHz data), the extreme values must be de-
- termined from the confidence levels associated with the number
of independent modes contained within the frequency sweep, as
discussed in (27). Thus, the use of the symmetrical estimate is
appropriate for the extremes, when the data is over-sampled in
frequency, but it is inappropriate for the midrange distribution.

100

/ Imaginary

IX. CONCLUSION
20

[——Wonte Garlo Simulation The input impedance of a linear antenna inside a hjgh
-=-=-=-  Asymmetric Gaussian Distribution : H H : H

o] ™ | oo Distrbuton | electncally large cavity has been |nve_st|gated theoretically and
———_Single Mode Approximation experimentally. Monte Carlo simulations based on a modal

‘ | ‘ i series representation, with statistical estimates for modal
4 2 ° z spacing and eigenfunction amplitudes, are found to agree
-E,*lIsart(<E,*>) with measurements in a mode stirred chamber cavity. The
Fig. 15. Normalized reflected field from simulation and simple fitratx parameter = .k3V/ (ZTQ).’ equal to the r.atlo of mOd"?" width
0.0609 (220 MHz). to modal spacing, determines the magnitude of the impedance
variations; the undermoded limit (separated, distinct modal
spectrapy < 1 results in large variations; the overmoded limit
=== - (many overlapping modes) > 1 results in small variations.
Asymptotic analysis of the modal series yields formulas for
L the extreme values of the impedance. The modal series for an
electrically short antenna has been shown to approximately
represent resonant dipoles and wall-mounted monopoles, pro-
vided the local impedance and free space radiation resistance
parameters are appropriately modified. The half space correla-
tion function used for the monopole was shown to represent the
known 3 dB normal field enhancement near the cavity wall. A
- simplified model based on balance of power gives practically
= Monte Carlo Simulation useful simple formulas for the impedance distributions and the

| |

100

®7 4=2.16

920 MHz

Imaginary

20

------ Asymmetric Gaussian Distribution
0 ——— e Gaussian Distribution . extreme values.
T T T T
-4 2 0 2 APPENDIX
-Ez'ef/sqrt(<E12>) FIELD REPRESENTATION

i lized reflected field ula dsimole fisat: 2.1 This section briefly summarizes the potential and field repre-
(Fg'gbla'Hz')\l_orma ized reflected field from simulation and simple fitat 2.16 g0 ytations [4], [5] (derivations can be found in [1]), introduces
the difference potential that is convenient for treating thin an-

tribution for the normalized real reflected field, for small value®©nnas, and gives the impedance formula which uses these rep-
of 7 in the undermoded limit resentations. Using potentials with time dependence?, the

electric field is
F(r) ~1——\/» 7'2+4a+'r)|7'|<<1 a1
E=iwA— V¢ (69)

(68)
here in the Coulomb ga A = 0. Using a modal series
This simple approximate distribution indicates how the “k|nk\fl(\;r the IcaV|ty fleIL:j [4], [g] lfg]é we can Wntle g !

should be interpolated as shown by the long dashed curve |

Fig. 15. The short dashed curves in Figs. 13 and 14 show thg4 (r)=——— Z {1+ (1+1)/Q}

improvement in the power balance distributions by use of this EOV w {1+ (141)/Q} —w?
asymmetric Gaussian distribution (representing the limited , , ,

bandwidth of the resonances). The long dashed curve in Fig. 13 A, (1) / A, (r ) J(r') dV

shows the single mode approximate distribution (23) at the A (r')-J ( /) dv?

kink” discrepancy. ~ soV Z w2 a i) (70)

The exponential decays of the density functions extracted in
the asymptotic analyzes are all reproduced by the power bahereJ is the antenna current, we have assuni)eijs large
ance results. One might be tempted to use the asymmetricathe last expression, and the neglect®fi/Q) terms in
Gaussian distribution (66) to refine the extreme curves (59) atiee numerator of (70) is justified here, because the frequency
(60), instead of basing these on the symmetrical three sigsm@acing between modes is assumed to be much smaller than
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the frequencies of interest in this paper. The representation (édyadiusa and length2h, with current.J, = I(z)6(x)d(y),
is derived in [1] and in [5] (where the solenoidal electric fieldhese become
modes are proportional to the vector potential modes), and is

similar to that found in [4] when the fre 1 w? (1+i/Q) Jwp
quency approaches an (q, z) — A, (a, 2) = ———— . , :

eigenfrequency. The modal potentials satisfy the Helmholtz g0V &~ w?(1+i/Q) —w;,

equation(V? + k2) A, = 0, the gauge conditioR - 4, = 0, h

the boundary conditiom x A, = 0, the normalization Apa(2) /h Ay () 1(2) d2" (74)

(V) [, A, - A, dV = b, Wherek, = wy/c, cis the

vacuum velocity of light, andv,, are the eigenfrequencies of

the simply connected, perfectly conducting, cavity. The quality " h d!

factor Q) is defined by Ay (a, 2) = 22 / I1(7) ———— - 1(2)
—h a2 + (z — z’)2

wo Jy H, - H,dV (75)

= 71
The scalar potential in the Coulomb gauge can be taken as
where the cavity boundary surfaceSsthe surface resistance is 1 1
R, = 1/ (06), the skin depth i$ = /2/ (wuo), p ando are d(r)=—= Z — ¢n (f)/ bn (') p (') AV’
. . . . eV 772 Jv
the magnetic permeability and electric conductivity of the wall, n n
and the modal magnetic field jg 2 , = V x A, . The quality 1 / p(r') dV’ (76)
factor depends om but is expected to be weakly dependent on dreg Jy  |r—1r']

n, especially for large: (at least for the majority of modes). ) ) ] )
Because we wish to consider linear antennas with small #4bere tr12e modal potentials again satlsfxthe Helmholtz equation
dius (and initially small length) it is convenient to improve thé V- + 7_7n) ¢n = 0, the boundary conditios,, = 0, and nor-
convergence of the modal series by subtracting out the qi@@lization(1/V’) Sy bnbm AV = b, Wheren,, are the eigen-
sistatic limitw — 0 of the series (the form of the current isv@lues of the simply connected, perfectly conducting, cavity.
left untouched by this process, so in the electrically longer ahP® final approximation in (76) again ignores images in the

tenna it is not the quasistatic distribution) cavity boundary. Using the continuity equatish- J = iwp
givesdl /dz = iwq, whereq is the charge per unit length on the

linear antenna. Thus, on the antenna we have

A(r)— A, (r) , ,
1 w*(1+14/Q) Jw? A / , 1 h q (=) d7’
- L . 4,0 [ 4,6) sem |
gV £~ w? (1 4i/Q) —wy v Ameo Jon  fa2 o (2 — =)

L (') dv’ L, 1 Y dz'
o1 w?/wi , = — () —F—/—— (7
~ _5‘0_V zn: (,d2 (1+Z/Q) _w% An (E)A An (E) 7’("-}60471- /;h 02” a2+(2_2/)2

- J (1) dV’ (72)

The antenna impedance is then found by using the stationary

L EMF representation [6]
where the quasistatic limit is

Tin=—rg~ | E-JdV=——— | E.(2)I(2)dz
A0=25 2 }A (r) / A, ) 12(0) / 12(0) / o

-J (') av’
e [ L)V

Tar Jy r—1|

A. Short Dipole
The modal series field representation (70) for a short dipole

o J(r') V' in a cavity is
~20 [ =20 yy
47 /V |Z_fl| B 0 gb W Z Anz (f) fv AnZ (Z/)I(ZI> dz'
.g_o/l(z’)lz—z’l av’ 73 0= aV 4 WPI+iQ)-w
T Jv

- o iwh Anz (f) Anz(o)
~ 0w O piig -

whereJ . is the solenoidal part of the current. The approxima-
tions used in (73) ignore the boundary images of the source cur- . ] ]
rent and should be reasonably accurate if the region occupiedf! the difference field from (74) is
the antenna current is small compared to the cavity volume, the
antenna is not near the boundary (except in the monopole case ~*

where we include the image in the wall where itis mounted), and ~ _ WI(0)h > A7, (0)w?/wp (80)
the observation point is near the antenna. For the linear antenna eoV w?(1+i/Q) — w2’

—Fy,=iw (A, — As,)
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Ignoring the scalar potential contribution in (79), since this term13] R. Balian and C. Bloch, “Distribution of eigenfrequencies for the wave
will have negligible contribution over most of the volume, we

find
2\ 1 [ 2
(1. >V—V |E.[* av
2h2 A7,(0)
s O 2 i)~ &
The reflected field is written as
EX'=F, - E? = (E. - E;,)— (B2 - E;,) (82)

[14]
[15]

[16]

(17]

(18]

whereE!*! is the field radiated by the antenna in free space. They g
first term in parenthesis is (80) and the second term is found
from the EMF expression (78) applied to a short dipole (th

local quasistatic field in the second term is approximated as not

including images in the cavity walls)

2)}I(z)dz

no (kh)?
(Y8

Ey)h

1 h ra
0] /_h {E2(2)

Zrad -

1
1(0)

Z = Rrad ~

(B — (83)

20]
[21]
(22]

(23]

[24]

whereZ,,q4 is the impedance of the dipole in free space and the
local impedancé is (3).

The authors would like to thank K. C. Chen of Sandia N
tional Laboratories for many helpful discussions on the pow
balance section and T. H. Lehman for many helpful discussi

ACKNOWLEDGMENT

regarding cavity mode statistics.

(1]

(2]
(3]
(4]
(5]
(6]

(71

(8]

9]
(20]

[11]

[12]

REFERENCES

L. K. Warne, H. G. Hudson, W. A. Johnson, R. E. Jorgenson, S. L.
Stronach of Sandia National Laboratories, and K. S. H. Lee of ITT Indus-

tries/AES, “Input impedance of antennas in high frequency cavities,”,

Sandia Laboratories Report, SAND2000-3112, Dec. 2000.

D. A. Hill, “Linear dipole response in a reverberation chamb&gEE

Trans. Electromagn. Compatol. 41, pp. 365—-368, Nov. 1999.

P. R. Berman, EdCavity Quantum Electrodynamics New York: Aca-

demic, 1994.

W. R. Smythe,Static and Dynamic Electricity Bristol, PA: Hemi-

sphere, 1989, sec. 13.30, 13.32, and 13.17.

R. E. Collin, Field Theory of Guided Waves New York: IEEE Press,
1991, sec. 5.9 and 5.10.

E. C. Jordan and K. G. Balmaig]ectromagnetic Waves and Radiating
Systems Englewood Cliffs, NJ: Prentice-Hall, 1968, sec. 14.08, 14.09,
10.05, 10.07, 10.08, 14.05, and 14.06.

equation in a finite domain. Il. Electromagnetic field. Riemannian
spaces,’Ann. Phys.vol. 64, pp. 271-307, 1971.

L. E. Reichl, The Transition to Chaos New York: Springer-Verlag,
1992, ch. 8.

M. Brack and R. K. BhaduriSemiclassical Physics Reading, MA:
Addison-Wesley, 1997.

L. K. Warne and K. S. H. Lee, “Some remarks on antenna response in
a reverberation chambelEEE Trans. Electromagn. Compatol. 43,

pp. 239-240, May 2001.

A. Papoulis, Probability, Random Variables, and Stochastic Pro-
cesses New York: McGraw-Hill, 1965, sec. 8-4, 14-1, pp. 126-127,
196-197, 189, 266—267.

I. S. Gradshteyn and |. M. RyzhiRable of Integrals, Series, and Prod-
ucts New York: Academic, 1965, p. 316.

K. C. Chen and L. K. Warne, “Improved asymptotic expansions of time
domain antenna currentRadio Sci. vol. 26, no. 5, pp. 1205-1208,
Sept./Oct. 1991.

L. B. W. Jolley, Summation of Series New York: Dover, 1961, pp.
196-197, 104.

M. Abramowitz and I. A. SteguniHandbook of Mathematical Func-
tions New York: Dover, 1972, p. 1026, 576.

S. A. Schelkunoff and H. T. Friigdntennas, Theory and Practice New
York: Wiley, 1952, ch. 10, sec. 8.4, 8.13, 8.14, 8.15, 8.16, 13.14.

L. K. Warne and K. C. Chen, “A simple transmission line model for
narrow slot apertures having depth and loss&8SEE Trans. Electro-
magn. Compatvol. 34, pp. 173-182, Aug. 1992.

J. M. Dunn, “Local, high-frequency analysis of the fields in a
mode-stirred chamberfEEE Trans. Electromagn. Compatol. 32,
pp. 53-58, Feb. 1990.

Larry K. Warne received the B.S.E.E. degree from
Fairleigh Dickinson University, Teaneck, NJ, in 1976
and the M.S.E.E. and Ph.D. degrees from the Cali-
fornia Institute of Technology, Pasadena, in 1977 and
1984, respectively.

Since 1978, he has been employed at Sandia Na-
tional Laboratories, Albuquerque, NM, where he is
currently a Distinguished Member of the Technical
Staff.

Kelvin S. H. Leereceived the B.S., M.S., and Ph.D.
degrees in electrical engineering and applied sci-
ences all from the California Institute of Technology,
Pasadena, in 1960, 1961, and 1964, respectively.
From 1965 to 1972, he was a Manager and
Associate Director of the Electromagnetic and Laser
Group, Northrop Corporate Laboratories, Pasadena,
CA. From 1972 to 1982, he was a Senior Vice
President of Dikewood Industries, Albuquerque,
NM. From 1982 to 1998, he was a Vice President
of Kaman Sciences Corporation, Santa Monica, CA.

Since 1998, he has been a Research Scientist with the Advanced Engineering

T. H. Lehman, “A statistical theory of electromagnetic fields in complexand Sciences Division, ITT Industries, Los Angeles, CA, where he has been

cavities,”, AFWL Interaction Note 494, May 1993.
R. H. Price, H. T. Davis, and E. P. Wenaas, “Determination of the sta-
tistical distribution of electromagnetic-field amplitudes in complex cav-
ities,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Inderdiscip, Top.
vol. 48, no. 6, Dec. 1993.

R. K. Chang and A. J. Campillo, Ed©ptical Processes in Microcavi-
ties  Singapore: World Scientific, 1996, pp. 389-426.
M. L. Mehta,Random Matricies San Diego, CA: Academic, 1991, ch.
1.

M. C. Gutzwiller,Chaos in Classical and Quantum MechaniciNew
York: Springer-Verlag, Inc., 1990, ch. 16, sec. 16.2, 16.3, 16.4, 16,
16.8), ch. 15 (sec. 15.5 and 15.6).
S. Deus, P. M. Koch, and L. Sirko, “Statistical properties of the eige
frequency distribution of three-dimensional microwave caviti®ys.
Rev. E, Stat. Phys. Plasmas Fluids Relat. Inderdiscip., Tafh. 52, no.
1, July 1995.

working on various problems in the field of electromagnetics.

H. Gerald Hudson was born in Pasadena, CA, in
1945. He received the A.A. degree as an Electronics
Technician from Pasadena City College, Pasadena,
CA, in 1965, the B.S.E.E. degree in electronics engi-
neering from California State Polytechnic University,
Pomona, in 1969, and the M.S. degree in electrical
engineering from the University of Denver, Denver,
CO, in 1970.

He is currently a Microwave Test/Measurement
Engineer at Sandia National Laboratories, Albu-
querque, NM.



992

William A. Johnson (M'00) was born in Beverly,
MA, on April 26, 1951. He received the B.S., M.A.,
and Ph.D. degrees in mathematics, with minors i
physics, from the University of Arizona, Tucson, in
1972, 1974, and 1978, respectively.

From 1978 to 1979, he was an Assistant Professq
with the University of Mississippi, University, MS.
From 1979 to 1981, he was with Science Applica
tions, Inc. From 1981 to 1983, he was with Lawrenc
Livermore National Laboratories, Livermore, CA,
operated by the University of California for the
U.S. Department of Energy. Since 1983, he has been with Sandia National
Laboratories, Albuquerque, NM, where he is currently a Principal Member
of the Technical Staff. He is also an adjunct Associate Professor for i
Department of Mathematics at the University of New Mexico, Albuquerque.

Dr. Johnson is a Member of Commission B of the International Union ¢
Radio Science.

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 5, MAY 2003

Roy E. Jorgenson(S'86—-M'88) was born in Port-
land, OR, on May 11, 1955. He received the B.S.E.E.
degree from the University of Colorado, Boulder, in
1977 and the M.S. and Ph.D. degrees in electrical en-
gineering from the University of lllinois at Urbana-
Champaign, in 1985 and 1989, respectively.

He served as an Officer in the U.S. Army at
Field Station Berlin, Berlin, Germany, until 1983.
Since 1989, he has been with Sandia National
Laboratories, Albuquerque, NM.

Stephen L. Stronachreceived the A.S.E.E.T. degree
North American Technical Institute, Albuquerque,
NM, in 1971.

Since 1971, he has been a Principal Technologist
at Sandia National Laboratories, Albuquerque, NM,
where in 1984, he joined the Electromagnetic Test
Group and has worked primarily doing test automa-
tion programming, setup, and conduction.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


